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Abstract. This research examines the economic viability of converting autonomous robotic systems to use 

wireless power transfer (WPT) for their dynamic charging during operation. Existing static robot charging 

models were compared to wireless charging, The analysis was made by developing Matlab model to analyse the 

process of charging autonomous service robots dynamically wirelessly versus statically by traditional means. 

The results demonstrated that wireless dynamic charging can potentially significantly increase the productivity 

for service robots and is economically feasible for the WPT technologies. 
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Introduction 

This research focuses on a very specific niche – wireless charging for robotic systems in 

warehouses. Robots are researched in thousands of articles; as they are becoming more and more 

widespread in all areas, they are also becoming an important part of a modern warehouse 

operation [1]. Many areas of the warehouse operations have been extensively examined to enhance the 

running of warehouses, from general planning to picking optimisation, including performance 

improving algorithms [2], which are applicable for robots as well as human operators. Also wireless 

charging lately has been examined very extensively, however, generally from the technical point of 

view, as wireless energy transfer, not as an economically feasible means of efficiency improvement. 

Furthermore, there has been little to no research work done on the techno-economic analysis on how 

the wireless charging can benefit the warehouse operations – which is surprising, since in practice 

WPT have been used for years already [3].  

This is a first of a series of articles dedicated to wireless charging of industrial service robots as a 

means of improving the economic feasibility of warehouse operations, and it is intended as a general 

introduction of wireless charging of industrial service robots to assess the potential of the technology. 

Materials and methods 

In order to evaluate the possible effects of wireless charging, a battery degradation model was 

created in MatLab, which in detail has been described in the previous research[4]. This model depicts 

the degradation of lead-acid batteries, which are still widely used for robotics in industrial 

applications, depending on charging scenarios, like the depth of discharge (DoD) and charging speed. 

This model was expanded for this research, to include also dynamic wireless charging, as robots 

move along wirelessly electrified pathways. For that, the energy flow modules were modified to 

permit simultaneous energy inflow from wireless charging and outflow from the robots’ movement 

during dynamic charging, which would result in either net charging or discharging of the battery. 

Additional blocks were included in the model to allow simulation of various randomly generated robot 

paths, and driving conditions. 

The energy flow scenario parameters for the model have been clustered in the following groups:  

• constant (limiting) parameters –include the factors that have been assumed to stay constant for 

the purposes of this model. They include initial robot parameters and some charging 

infrastructure parameters; 

• variable parameters – this group includes variables that are randomized, depending on the 

possible outcomes as well as modelled (robot operation and charging) parameters that are 

changed to evaluate specific scenarios, namely wireless dynamic versus static charging.  

The model includes two operational scenarios (A and B) and three charging scenarios (α, β  

and χ). 
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Constant (limiting) parameters 

The following robot parameters were used as constant during the scenarios, based on the Lesla 

wirelessly charging robot shown in Figure 1. 

• Battery initial capacity (before degradation) Cnom = 1400 Wh at battery state of charge (SoC) 

100 %. 

• V – robot’s speed. Vmax = 0.8 m·s
-1

 In this paper it is assumed that the robot is moving 

constantly on maximum constant speed to do the calculations for the worst case dynamic 

charging scenario.  

• Robot net weight – Wn = 13.7 kg; Maximum cargo weight 50 kg. 

 

Fig. 1. Lesla industrial service robot 

Robot operation parameters 

In this paper it is assumed that the robot’s power consumption depends on two variable 

parameters: robot’s state of operation and robot’s full weight (including its load).  

The model assumes four possible states of robot: 1: doing nothing (receiving a new task); 2: 

loading/unloading the load; 3: driving empty; 4: driving with the load. These states correspond to the 

following modes of the robot operation (Fig. 2) – the states are noted in parentheses.  

In this model we have assumed optimum operation, that the robot never drives empty, but it 

delivers a new load to the warehouse, whilst it is picking up a new cargo from the warehouse. Thus, 

the effective emulation algorithm can be shortened to four stages:  

 

Fig. 2. Modes of robot operation for model’s purposes 

The maximum trip distance the robot was doing in one task was 100 meters, the minimum 

distance – 20 meters. In this simulation 700 000 trips were generated in two operational scenarios – A: 

random and B: optimised.  

The scenario A assumes that the load location is not optimised and that the cargo can be located 

anywhere in the warehouse – we have used uniform random distance distribution for this scenario. 

The optimised scenario B assumes that the most frequently bought merchandize is located in the 

shelves nearer to the shop, so that the driving distance for these products is shorter. The exact 

distribution would largely depend on the specifics of the particular business. In our research just for 

demonstration purposes we have used the Pearson distribution with kurtosis of 2.7.  

The distributions of the distances for both scenarios are presented in Fig. 3. 
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Fig. 3. Modelled distributions of task distances for scenario A and B 

The robot’s power consumption data for various modes of operation are presented in Table 1 

together with the times of the operations used in the model for energy consumption calculation 

purposes. 

Table 1 

Robot’s energy consumption parameters 

State Mode of operation Energy consumption, Wh  Time, sec 

0 Charging (stationary) 5 
modelled, 

charging scenario α only 

1 

Receiving a new task 

Loading 

Unloading 

5 

3 

10 

10 

3 Driving empty 16 (unused) 

4 Carrying the cargo 
16-18 modelled, 

depending on load 
modelled, scenarios α and β 

The robot’s energy consumption while carrying load is variable, depending on the weight of the 

cargo. The energy consumption for this research has been obtained from the empirical measurements 

of the Lesla robot energy consumption, and it varies from 16 Wh up to 18 Wh for full load weighting 

50 kg.  

The table of weights for the simulation tasks was generated using uniform distribution as for a 

generic warehouse (Fig. 4). The same set of weights was used for all operation and charging scenarios. 
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Fig. 4. Modelled distribution of task weights 

Charging parameters 

There have been three robot charging scenarios emulated for the analysis. The first charging 

scenario α assumes that the robot is charged using traditional plug-in methods. Two other charging 

scenarios – β and χ – use wireless charging. Scenario β assumes that wireless charging happens 

stationary during the robot states 0 and 1: respectively, when the robot is standing still during loading, 
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unloading and during dedicated charging time. In scenario χ wireless charging happens both while the 

robot is stationary as well as dynamical during the movement. Scenario χ is further analysed in three 

sub scenarios: if the charging line is laid in 10 %, 30 %, 50 % or 70 % of the warehouse roads (i.e. the 

dynamic wireless charging process happens respectively 10 %, 30 %, 50 % and 70 % of the driving 

time).  

In the simulation battery charging is set from 20 % SoC to 80 % SoC (Fig.5), which was selected 

by two factors: (1) the charge acceptance in this battery SoC range is the highest, which allows the 

fastest charging times (so called “bulk” and “boost” stages of the charging process) [5], and (2) the 

cycle life of lead-acid batteries decreases dramatically as discharged more than 80 %DoD.  

 

Fig. 5. General robot charging algorithms 

However, each 4th time the batteries are charged fully up to 100 %, to prevent battery sulphation 

and faster capacity loss[6]. The battery remaining cycle life is adjusted in the model after each 

charging cycle, using the manufacturers data, which for this particular battery (U.S. Battery US 2200 

XC2) is approximately 1000 cycles at DoD 80 % [7]. 

The following five charging scenarios have been analysed: 

Table 2 

Robot’s charging scenarios 

State Charging type 
Charging periods – 

robot state 

Charging 

power, W 

Additional 

coefficients 

α 
Charging (stationary) 

 
0 – base charging none 

β 

Wireless charging 

(stationary) 

 

+ 

1.Receiving a new task 

2. Loading 

Unloading 

parking precision 

over charging pad 

χ1 

+ 

4. While moving 

10 % of time 

χ2 30 % of time 

χ3 50 % of time 

χ4 

Wireless charging 

(dynamic) 

75 % of time 

21 

driving precision 

over charging 

line 

In the traditional plugin charging scenario α charging happens (manually) at the dedicated spot 

until the set SoC is reached. In the stationary wireless charging scenario β and all three dynamic 

charging scenarios χ1 το χ4  the charging power is additionally discounted by the amount of the 

precision the robot moves itself over charging lines. The empirical data observed from the Lesla robot 

movement over charging lines demonstrate that usually the robot stays within 3 cm limits, so the 
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charging alignment precision table for each task was generated using normal distribution with 

σ = 3 cm.(Fig. 6). 
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Fig. 6. Distribution of robot’s movement precision over charging lines 

The scenarios were run until the simulated battery reached the end of life. The battery end of life 

has been reached, when the maximal actual battery capacity falls below 20 % of nominal capacity, as 

per the battery standard EN 60896-11:2003[8].  

Results and discussion 

The battery end of life was reached in all scenarios but three – χ3(B) and χ4 (A and B) (see 

Figure 7), where the simulation limit of 700 000 tasks was reached by days 662, 929 and 612 

respectively. 

The battery end of life expectation difference between the distance distribution scenarios (A and 

B) is the smallest at the ordinary plug-in charging scenarios – only 11 days (or 5 %), however, this 

difference increases with wireless charging, reaching 169 days (32 %) between the scenarios A and B 

at 30 % dynamic wireless charging, which can be reasonably assumed that the effect from dynamic 

wireless charging is more distinct at longer driving distances between the charging events. 
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Fig. 7. Battery expected end of life at various robot charging scenarios 

It can be assumed that this trend would continue, as because of different battery SoC during 

charging, the battery deterioration is quite lower during wireless charging than during ordinary 

charging (see Figure 10). As demonstrated in the scenario χ4(B), when the proportion of dynamic 

charging reaches 70 % of the road, the battery almost stops deteriorating. 
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Fig. 8. Battery SoHat various robot charging scenarios 

This is because the battery basically is never discharged below 80 % SoC, as the energy spent 

during 30 % of the road not covered by wireless charging is regained during cargo loading and 

unloading times (See Fig.9). 
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Fig. 9. Battery SoC during 24 hour cycle at various robot charging scenarios 

Economic implications 

There are both direct and indirect economic effects from dynamic wireless charging for robots. 

These effects can be analysed from capital and operational expenditure perspective. Direct capital 

expenditure includes installation of the charging infrastructure and robots; the operational expenditure 

includes the energy costs, service (battery replacement) costs etc. Indirect economic effects come from 

increase of the income gained from increased operation of the warehouse. To evaluate the effects 

correctly, the indirect effects have to be included, by assessing differences in the robot’s productivity 

under various scenarios.  

During simulation of traditional plug-in charging, the robot on average carried out 396 and 607 

tasks per day in the distribution scenarios A and B, respectively (Figure 10).  
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Fig. 10. Effective tasks per day at various robot charging scenarios 

In static wireless charging scenarios these figures were 453 and 757 tasks per day, already 

reaching respective 14 % and 25 %improvement over plug-in charging. However, with dynamic 
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wireless charging the robot productivity reached 750 and 1140 tasks per day or 90 % improvement 

over plugin charging. 

It was noteworthy that throughout the whole range of dynamic wireless charging proportions, the 

effect was slightly larger for the optimised scenario B than for the uniformly distributed scenario A, 

except for the last one, which suggests diminishing return on increasing the dynamic wireless charging 

ratio.  
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Fig. 11. Improvement on effective tasks per day at various robot  

charging scenarios vs plug-in charging 

This also might be explained that by 70 % wireless charging in principal the point has already 

been reached, where there is no need for additional wireless track installation, as no further benefit can 

be achieved. 

In order to get a preliminary effect of wireless charging on the cost of ownership for warehouse 

robots, the main economic factors are presented in the table. They can be attributed either directly to 

the task (direct costs), attributed indirectly to the tasks (battery lifetime), or attributed to the time 

(robot lifetime, infrastructure costs).  

The following costs have been used for the calculations: cost of the warehouse robot – 5000 EUR 

(estimated retail cost of the Lesla robot), static charger – 21 EUR [9], Wireless charger costs about the 

same, around 20 EUR·m
-1

 (estimated Lesla dynamic wireless charger cost per m), however, one static 

charger can be used at maximum for three robots (assuming, they do not have to be charged 

simultaneously), while the wireless charging infrastructure can be used by all robots. Therefore, the 

average infrastructure costs have been calculated assuming that 10 robots are using the dynamic 

charging infrastructure. The costs for electricity are calculated using the average electricity price in the 

EU 0.121 EUR·(kWh)
-1

 [10].  

As the energy flow modelling was done up to failure of the batterySoH, all the calculations have 

been attributed to the tasks based on the end of the lifetime (EoL) cycle.  

For this particular robot application, the cost of the robots (depreciation) is the most expensive 

part of the cost structure, amounting up to 95 % of the total costs for the operations. Therefore, the 

productivity increase plays much more important part than the increase of the battery lifetime or losses 

due to the wireless energy transfer inefficiency. It demonstrates that by increasing the robot 

productivity wireless charging can bring the operation costs down by 50 %. 

Several directions for further research have been identified, which shall be addressed in further 

articles: 

• an option of trickle charging for wireless dynamic charging will be realized in the model to 

keep the battery SoC in the range of 0.9 to 1 for lead-acid batteries, thus maximizing the 

battery lifetime – a feature that is not possible using the traditional plug-in charging, 

• the model will be adapted for use of Li-Ion batteries, which currently still have not been used 

widely in industrial service robots because of the prohibitive costs, however, with constant 

decrease of the Li-Ion battery prices and additional benefits from wireless charging their use 

might become more economically justified, 
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• investigation of charging effectivity vs infrastructure costs based on deployment case study 

will be included for full economic benefit analysis, 

• detailed implementation of distance optimisation algorithms will be carried out based on 

specific industry data to determine the optimum amount of charging lines needed for real-life 

conditions. 

Table 3 

Robot’s cost of ownership at various charging and operational scenarios 

Charging 

scenario 

Charger 

costs, Static, 

EUR 

Dynamic 

track, % of 

the distance 

Electric 

track, m 

Total infra-

structure 

costs, EUR 

Infrastruc-

ture EUR, 

per robot 

(for 10 

robots) 

Days till 

battery EoL 

Robot depr. 

/ bat-tery 

EoL 

αΑ 22 x 0 22 7 216 6 % 

αΒ 22 x 0 22 7 227 6 % 

βΑ 20 x 0 20 7 255 7 % 

βΒ 20 x 0 20 7 314 9 % 

χ1Α x 10 30 600 60 278 8 % 

χ1Β x 10 22 440 44 356 10 % 

χ2Α x 30 50 1000 100 357 10 % 

χ2Β x 30 30 600 60 526 14 % 

χ3Α x 50 70 1400 140 572 16 % 

χ3Β x 50 38 760 76 662 18 % 

χ4Α x 70 90 1800 180 929 25 % 

χ4Β x 70 48 960 96 612 17 % 

Charging 

scenario 

Robot depr., 

EUR per 

1000 tasks 

Battery 

costs, EUR 

per 

1000 tasks 

Number of 

tasks before 

EoL, 1000 

Total 

energy, Wh 

per battery 

life 

Energy, Wh 

per 1000 

tasks 

Energy, 

EUR per 

1000 tasks 

Total costs, 

EUR per 

1000 tasks 

αΑ 3.46 0.23 85.6 61242 716 0.09 3.78 

αΒ 2.26 0.15 137.8 61370 446 0.05 2.46 

βΑ 3.02 0.17 115.6 78606 680 0.08 3.28 

βΒ 1.81 0.08 237.8 96777 407 0.05 1.94 

χ1Α 1.94 0.10 196.2 88974 454 0.05 2.10 

χ1Β 1.70 0.07 286.1 113756 398 0.05 1.82 

χ2Α 1.35 0.06 363.3 123995 341 0.04 1.44 

χ2Β 1.50 0.04 479.7 182151 380 0.05 1.59 

χ3Α 2.16 0.06 362.5 219150 605 0.07 2.29 

χ3Β 1.30 0.03 700.0 253145 362 0.04 1.37 

χ4Α 1.82 0.03 700.0 402167 575 0.07 1.92 

χ4Β 1.20 0.03 700.0 272434 389 0.05 1.27 

Conclusions 

1. The calculations illustrate that wireless charging can decrease the costs by half, compared to static 

plug-in charging.  

2. The model showed that the robot battery lifetime can be prolonged by using wireless charging and 

that the lifetime increase is significant, reaching almost constant SoC level at 70 % dynamic 

wireless charging ratio. 

3. Apart from financial benefits from the increased battery lifetime, the robot productivity is 

increased reaching 190 % compared with plug-in. Economic calculations illustrate that robot 

depreciation is the largest cost item, and therefore increase of productivity is of primary 

importance.  

4. The distance distribution has notable impact on robot productivity and its battery lifetime. 
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